|
Linesman/Mediator system Radar Type 85
The smaller square aerial to the left of this Type 85 at R.A.F. Staxton Wold is a Marconi S723 "Martello" 3d radar, known to the R.A.F. as the Type 91. The building that housed the Type 85 radar was known as the R12. The R12 building was huge and the thick steel reinforced concrete walls were designed to withstand nuclear blast. There were three levels in the building, the cellar could be used as a dormitory and held stores of emergency rations. The ground floor housed the Type 85's twelve (yes, 12!) water cooled klystron transmitters that each produced a peak power pulse of 4.5 Mw. In some parts of the band the klystrons could develop up to 8.0 Mw peak. The power developed by the klystrons was calculated by measuring the temperature differential of the coolant. The top floor housed the Type 85's 12 receivers and signal processing equipment, the "heights" computer, the RX12874 signal processing equipment and computers and the SSR (Secondary Surveillance Radar) equipment. You might be able to make out the SSR aerial just below the feed horn of the Type 85 aerial. There was also a display console cabin for the "scope dopes", one or two "Wendy houses", various workshops, offices, a crew room and kitchen and room 27, the Type 85's control room. There was also a considerable amount of wave guide from floor to ceiling and from wall to wall.
To improve the jamming resistance of the Type 85 the 4 x 60 Mhz bands for which klystrons were provided were split into parts of equal power and recombined with half the power from another band, e.g. 1/2A + 1/2D and 1/2B + 1/2E. In this way the frequency in a given beam would consist of two frequencies 300 MHz apart, changing from pulse to pulse either randomly or actively controlled by the amount of jamming received on that particular frequency. There was also
a facility called horn changeover where the output frequencies from the odd
horns would be swapped with the frequencies of the even horns once per revolution,
so that, within two rotations of the aerial, each beam would have used all possible
frequencies in the total 500 MHz band. The Type 85 was designed to be resistant
to the high power jamming produced by a Carcinotron. This method of frequency
agility forced a Carcinotron jammer in to a broad band barrage mode, spreading
the available jamming RF power over a greater bandwidth and thus diluting the
jamming effect.
The pulse transmissions of all the radars on a site was controlled by a "No Break Trigger" (NBT) that ensured all the radar transmitters fired at the same time and Gerry Oakley tells me that it was a b*****d to work on!. Triggering the radars with the NBT considerably reduced local interference between the various radars on the site. If all the transmitters were allowed to "free run" you could get spiral patterns of dots on the PPI screen. These dots were known as "running rabbits" by U.S. radar people. At R.A.F. Boulmer the NBT was located on the top floor of the R12, just outside the crew room. The site had its own power generation operated by the Department of Environment chaps. The typical characteristics of the Type 85 air defence
search radar were:
(Thanks to Martyn (Taff) Williams, Q-L-R-85 Neatishead 1975-1982, Boulmer 1990, Kenneth Allen, ex 87th entry, ex Chf/Tech LFitGR on Type 85's Dave Sams, Lew Paterson and Jack Charlton for their invaluable contributions) |
Updated 02/04/2004 |
Constructed by Dick Barrett |
(To e-mail me remove "ban_spam_" from my address) |
©Copyright 2000 - 2003 Dick Barrett |
The right of Dick Barrett to be identified as author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. |